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Household consumption in China is associated with substantial PM2.5 pollution, through activities
directly (i.e., fuel use) and/or indirectly (i.e., consumption of goods and services) causing pollutant emis-
sions. Urban and rural households exhibit different consumption preferences and living areas, thus their
contributions to and suffering from air pollution could differ. Assessing this contrast is crucial for com-
prehending the environmental impacts of the nation’s ongoing urbanization process. Here we quantify
Chinese urban and rural households’ contributions to ambient PM2.5 pollution and the health risks they
suffer from, by integrating economic, atmospheric, and health models and/or datasets. The national pre-
mature deaths related to long-term exposure to PM2.5 pollution contributed by total household consump-
tion are estimated to be 1.1 million cases in 2015, among which 56% are urban households and 44% are
rural households. For pollution contributed indirectly, urban households, especially in developed pro-
vinces, tend to bear lower mortality risks compared with the portions of deaths or pollution they con-
tribute. The opposite results are true for direct pollution. With China’s rapid urbanization process,
without adequate reduction in emission intensity, the increased indirect pollution-associated premature
deaths could largely offset that avoided by reduced direct pollution, and the indirect pollution-associated
urban–rural inequalities might become severer. Developing pollution mitigation strategies from both
production and consumption sides could help with reducing pollution-related mortality and associated
urban–rural inequality.

� 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

China’s rapid economic development has been accompanied by
substantial ambient PM2.5 pollution and adverse health impacts
[1–3]. The past decade has seen China’s great efforts to mitigate
PM2.5 pollution [4,5], yet its annual average PM2.5 concentration
still significantly exceeds the World Health Organization (WHO)
guideline (5 lg/m3) [6]. Over the past decades, crowds of rural res-
idents have swarmed into cities under the rapid urbanization pro-
cess in China. This process has resulted in lessened emissions from
household direct fuel use in activities like heating, cooking, and
private vehicle driving. Hence, urbanization-induced population
migration was estimated to have contributed to reductions in
ambient PM2.5 concentrations in China [7]. However, households,
especially those living in urban areas, also contribute considerable
PM2.5 pollution indirectly, by causing pollutant emissions embed-
ded in the supply chains to satisfy household-consumed products
and services [8,9]. The indirect emissions attributable to a region
could spill over to other regions through trade and atmospheric
transport [10,11]. Thus the impacts of China’s ongoing urbaniza-
tion process on PM2.5 pollution are more complicated with house-
hold indirect pollution contributions included. Yet the importance
of such indirect pollution relative to the effect of household direct
emissions remains unclear.
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Urban and rural households exhibit different consumption pref-
erences and living areas [12]. Compared with rural households,
urban households tend to have different consumption structures
and higher affordabilities, and their direct energy consumption
activities are dominated by cleaner fuel (e.g., gas). The living areas
of urban and rural households are separated but usually interlaced,
thus air pollution could affect both areas wherever it is emitted
from, because of atmospheric transport. Furthermore, China is fac-
ing severe interprovincial social, economic, and demographic
inequalities [12,13], so the urban and rural disparities could vary
across different provinces. Given these disparities, urban and rural
household contributions to and suffering from air pollution could
be different. Assessment of this contrast is important to compre-
hensively understand the environmental impacts of China’s urban-
ization process. Furthermore, it could help with emission
responsibility assignment, emission mitigation, and inequality
alleviation in China.

Previous studies have assessed the air pollution and health
impacts attributable to urban and rural household consumption
activities. Direct residential energy use for heating and cooking,
especially by rural households, has been identified to be one of
the leading drivers of air pollution in developing countries
[14,15]. A study for India further revealed that transport and indi-
rect emissions associated with household consumption con-
tributed almost twice as much to ambient PM2.5 as direct
emissions from biomass cook stoves [16]. Zhu et al. [17] show that
household indirect PM2.5 emissions related to the top four items
purchased, together with direct PM2.5 emissions, could contribute
more than 55% of total air pollution in China. It has been estimated
that in China, urban and rural households each contribute to� 0.25
million air pollution-related premature deaths through their con-
sumption activities in 2012 [8]. The mortality calculation in Zhao
et al. [8] was based on the Integrated Exposure-Response (IER)
model [18], and newer epidemiological studies have suggested
much severer sensitivity of human health to pollution exposure
than represented in IER [19]. More importantly, previous studies
have focused on urban and rural household contributions to air
pollution (as a source), yet the contrast with their respective suf-
fering from the pollution (as a receptor) has not been quantita-
tively evaluated.

Here, we evaluate urban and rural household contributions to
and suffering from ambient PM2.5 pollution, and assess the associ-
ated urban–rural inequalities in China. Our study is conducted for
the year 2015, the latest year for which all necessary data are avail-
able. Anthropogenic emissions considered in our study include the
major pollutants related to ambient PM2.5, i.e., sulfur dioxide (SO2),
nitrogen oxides (NOx), carbon monoxide (CO), ammonia (NH3),
black carbon (BC), primary organic carbon (POC), and other pri-
mary PM2.5 (excluding BC and POC). Household direct emissions
are obtained from a customized emission inventory, and their indi-
rect emissions are further estimated with a Multi-Regional Input-
Output (MRIO) analysis (see Materials and methods). Then we
use the GEOS-Chem atmospheric chemical transport model to sim-
ulate urban and rural household contributions to near-surface
PM2.5 mass concentrations. We further use the Global Exposure
Mortality Model (GEMM) [19] to quantify the premature deaths
attributable to long-term exposure to PM2.5 pollution associated
with household consumption activities. Through building a high-
resolution (100 m) spatial distribution dataset for urban and rural
population densities, we identify different household groups from
all premature deaths. We only focus on the emissions and prema-
ture deaths contributed directly and indirectly by household con-
sumption activities. Although part of government consumption
and capital formation aims to provide public service to the whole
society, its associated pollution is not considered here.
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2. Materials and methods

2.1. Customized emission inventory based on MEIC and GAINS

We derive a sector-, province-, and pollutant-specific emission
inventory by combining two well-developed emission inventories,
i.e., the Multi-resolution Emission Inventory for China (MEIC:
http://www.meicmodel.org) and Greenhouse Gas and Air Pollution
Interactions and Synergies (GAINS: https://iiasa.ac.at/models-tools-
data/gains). Air pollutants considered in this study include gaseous
pollutants (SO2, NOx, CO, and NH3) and primary aerosols (BC, POC,
and other primary PM2.5). MEIC is developed by Tsinghua Univer-
sity, and publicly provides anthropogenic emissions for 30 pro-
vinces in the Chinese mainland. We get all pollutants’ emissions
from MEIC except for NH3, which is gotten from Huang et al. [20]
and converted to the same sectors of MEIC. However, the publicly
accessible emission inventory of MEIC only includes 5 integrated
sectors, lacking sectorally detailed information for further
consumption-based emission accounting. Thus we also incorporate
another emission inventory, GAINS, which publicly provides emis-
sions of 56 sectors for each province. For each province, we apply
sectoral proportions in GAINS data to the total emissions in MEIC
and obtain a customized emission inventory. We first separate the
56 sectors in GAINS into 5 groups according to the 5 integrated sec-
tors inMEIC (see Table S2 online for sectormapping). For each sector
group, the detailed sectoral proportions inGAINS are then applied to
the emission amount in MEIC.We eliminate emissions from several
minor sectors inGAINSwhich are not included in all provinces or not
included in MEIC; these sectors together contribute less than 5% of
the national total emissions for most pollutants.

For road-transportation sectors, we further separate emissions
associated with commercial vehicles from emissions associated
with private vehicles. Private transport does not participate in
the supply chain and produces no economic output. The separation
procedure follows our previous study [21], based on vehicle emis-
sion data from GAINS. Private transport includes passenger cars,
and mopeds and motorcycles, and the rest are taken as commercial
transport. Emissions from private transport and the residential sec-
tor are taken together as household direct emissions.

We get a customized Chinese emission inventory for 2015,
including 30 provinces, 50 sectors (including one direct emission
sector and 49 other sectors), and 7 pollutants. This customized
emission inventory, except the direct emission sector, is then re-
mapped from 49 sectors to 30 sectors to match the MRIO table
(see Table S2 online for sector mapping).
2.2. Household consumption-based emission

Household direct emissions are obtained from the customized
emission inventory. Indirect emissions driven by household pur-
chases are estimated via a MRIO analysis [22]. The MRIO analysis
has been widely used to trace emissions embedded in traded prod-
ucts [23–27]. In this study, we apply China’s provincial MRIO table
[28] in 2015 to calculate the indirect emissions.

A basic MRIO analysis can be simplified as

X ¼ AX þ Y : ð1Þ

Here, X indicates the total economic output matrix, and its element
xri is the total economic output of sector i (i = 1, 2, ���, n) in region r
(r = 1, 2, ���, m); Y is the final monetary consumption matrix, and its
element yrsij indicates the output produced in sector i of region r to
supply final consumption in sector j (j = 1, 2, ���, n) of region s
(s = 1, 2, ���, m); A is the direct requirement coefficient matrix, and
its element arsij reflects the input required from sector i in region r

http://www.meicmodel.org/
https://iiasa.ac.at/models-tools-data/gains
https://iiasa.ac.at/models-tools-data/gains
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to support the production of one unit of output from sector j in
region s.

Here, A is defined as

A ¼ Z=X; ð2Þ
in which Z is the intermediate monetary consumption matrix and
its element zrsij refers to the input required from sector i in region
r to produce intermediate products from sector j in region s.

Eq. (1) can be further transformed as

X ¼ I � Að Þ�1Y : ð3Þ
Here, I represents the identity matrix, and I � Að Þ�1 is the Leontief
inverse matrix.

Therefore, economic output triggered by household consump-
tion activities can be calculated as

Xh ¼ Xu þ Xr ¼ I � Að Þ�1 � Yu þ I � Að Þ�1 � Y r: ð4Þ
Here, Xh refers to the matrix of total economic output triggered
by urban (Xu) and rural (Xr) household consumption. Yu and Y r

represent the final consumption of urban and rural households
respectively.

With the customized emission inventory, indirect emissions of
pollutant k driven by household consumption activities can be cal-
culated as

Ec;k ¼ f k � Xh: ð5Þ
Here, f k is the emission intensity matrix of pollutant k, and its ele-
ment f rk;i depicts the emission intensity of pollutant k in sector i in
region r, and can be calculated as

f rk; i ¼ Pr
k;i=x

r
i ; ð6Þ

in which Pr
k;i refers to the production-based emission of pollutant k

in sector i in region r, which is obtained from the customized emis-
sion inventory.

Thus, urban and rural households’ indirect contributions to
emissions of pollutant k are calculated as Eqs. (7) and (8)
respectively:

Eu
c;k ¼ f k � Xu; ð7Þ

Er
c;k ¼ f k � Xr: ð8Þ

To facilitate subsequent GEOS-Chem simulations, household
consumption-based emissions are then gridded with the spatial dis-
tribution information in 2015 from MEIC at 0.25� longitude � 0.25�
latitude for 5 integrated sectors, i.e., agriculture, power, industry,
transportation, and residential. Prior to the gridding, household
direct and indirect emissions are aggregated to 5 integrated sectors
according to the classification of MEIC.

For each province, to quantify the household comprehensive
pollution contribution by considering emissions of all pollutants,
we use the index named ‘‘atmospheric pollutant equivalent”
(APE) designed by China’s Ministry of Environmental Protection
(MEP). The APE method has been used in many previous studies
[9,29–31]. It allows the aggregation of different air pollutants
based on their environmental and health impacts. APE gives us
access to represent the integrated severity of air pollution caused
by different air pollutants, which is to some extent similar to the
use of carbon dioxide equivalent to measure all greenhouse gases
and their global warming potential [32].

Based on the MEP calculation method, different types of pollu-
tants are combined as

NAPE ¼
X

k

Ek

Ck
: ð9Þ
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Here, NAPE denotes the number of APE. Ek depicts the emission of
pollutant k. Ck denotes the pollutant equivalent coefficients (see
Table S3 online) for pollutant k, which considers each pollutant’s
impact upon an ecological system, toxicity on organisms, and the
technical feasibility for removal. As there are no official pollutant
equivalent coefficients for the pollutants BC, POC, and other primary
PM2.5, we use the coefficient of soot as a reference.

2.3. PM2.5 concentration simulation

With the gridded household consumption-based emission data,
we further simulate urban and rural household contributions to
China’s ambient PM2.5 concentration in 2015 with GEOS-Chem
v11-01. GEOS-Chem is an atmospheric transport chemical model,
and its PM2.5 simulation has been evaluated extensively by previ-
ous studies [21,23,33,34]. PM2.5 species analyzed in this study
include sulfate, nitrate, ammonium, black carbon (BC), and primary
organic aerosol (POA). Here, modeled POA is converted from mod-
eled POC with a POA/POC ratio of 2.1 recommended by GEOS-
Chem Wiki (https://wiki.seas.harvard.edu/geos-chem/index.php/
Particulate_matter_in_GEOS-Chem). Our study conducts a total of
six nested simulations, including one control case and five sensitiv-
ity simulations. The sensitivity simulations are designed for differ-
ent pollution contribution cases, and the detailed definition can be
found in Table S4 (online). PM2.5 concentrations attributable to
each pollution contribution case are derived from the differences
between the all-emission simulation and each sensitivity
simulation.

All simulations are driven by the assimilated meteorological
field GEOS-FP and performed with the resolution of 0.3125�
longitude � 0.25� latitude. Boundary conditions are provided by
GEOS-Chem global simulations at a resolution of 2.5�
longitude � 2� latitude and updated every 3 h. Each simulation is
run from June 2014 through December 2015, with the first seven
months in 2014 used for model spin-up. Other model setups,
including natural emissions, meteorology, and physical schemes,
can be found elsewhere [21,35]. The standard GEOS-Chem simula-
tion can well reproduce PM2.5 concentrations, but show certain
biases in simulating PM2.5 components. For instance, GEOS-Chem
tends to underestimate sulfate (normalized mean bias (NMB) � –
40%) and overestimate nitrate (NMB � 80%) [36]. To account for
these issues and better simulate PM2.5 over China, we make several
model improvements. Firstly, we add the chemical mechanism of
aqueous-phase oxidation of S(IV) (the sum of dissolved SO2, HSO3

�,
and SO3

2�) by dissolved nitrogen dioxide (NO2) in GEOS-Chem’s
chemistry module to enhance sulfate formation by following
Zhang et al. [34]. Secondly, we consider the heterogeneous uptake
of SO2 on deliquesced aerosols under high-relative humidity condi-
tions by taking suggestions from Wang et al. [37]. Finally, we fol-
low Heald et al. [38] that reduce surface HNO3 concentration by
25% when using ISOROPIA II to simulate inorganic aerosols, to min-
imize the potential impact of the overestimated surface HNO3 due
to the weak wet deposition in the model on nitrate and ammonium
simulations.

To obtain a more accurate health impact estimate, the simu-
lated surface PM2.5 concentrations are further downscaled to a
finer resolution of 0.1� longitude � 0.1� latitude by applying the
spatial distribution of the satellite-derived PM2.5 data from Ham-
mer et al. [39]. To achieve the scaling, we perform the following
steps according to our previous work [21]. We first regrid the sim-
ulated PM2.5 concentrations from the resolution of 0.3125�
longitude � 0.25� latitude to the resolution of 0.1� longitude �
0.1� latitude. We then calculate the ratio of satellite-derived
PM2.5 concentrations in each grid to the simulated PM2.5 concen-
trations in the control case. Finally, we apply this grid-level ratio
to all simulations.

https://wiki.seas.harvard.edu/geos-chem/index.php/Particulate_matter_in_GEOS-Chem
https://wiki.seas.harvard.edu/geos-chem/index.php/Particulate_matter_in_GEOS-Chem
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Both the model-simulated surface PM2.5 and the satellite-scaled
surface PM2.5 are evaluated by comparison with air quality moni-
toring station observations, and are shown in Fig. S1 (online).
The spatial distribution of the observation stations is shown in
Fig. S2 (online). Here, each data point represents a model grid cell.
Prior to the scaling, the model simulation already shows a good
performance in spatial distribution of surface PM2.5 (r = 0.94,
NMB = 21%), especially in densely populated areas (r = 0.97,
NMB = 15%). However, the model tends to overestimate PM2.5 with
a relatively large bias in concentrations. After scaling with satellite
retrieval data, the bias is remarkably reduced (all stations: r = 0.96,
NMB = –2.9%; population-dense stations: r = 0.97, NMB = –4.6%).

We further evaluate the modeled PM2.5 compositions, including
sulfate, nitrate, ammonium, POA and BC. Due to the absence of
publicly available time-continuous observational PM2.5 composi-
tion data, we collected the composition observation data from
the literature (see Table S5 online for the observational composi-
tion data details). Fig. S3 (online) shows that nitrate
(NMB = 5.5%) and sulfate (NMB = –17.8%) simulations exhibit much
lower biases than shown in the previous study [36]. Ammonium,
POA and BC are also well reproduced with NMB of 7.0%, �16.4%
and 5.1%, respectively. The model-simulated PM2.5 compositions
exhibit low-to-modest spatial correlation with observations
(R = 0.22–0.40 for these compositions). This relatively low correla-
tion is partly because the observation time for each sample does
not completely match the simulation time. Additionally, the obser-
vation stations for each PM2.5 composition are limited in number
and spatially dispersed, thus the model performance is largely
dependent on the selected stations. Moreover, the differences in
observation approaches across various studies [40,41], from which
we collect the observational data, could also explain the relatively
low correlation to some extent.

2.4. Premature deaths caused by PM2.5 exposure

In this study, we employ the GEMM exposure–response model
[19] to estimate PM2.5-related premature deaths. The GEMMmodel
represents an update upon the IER model used in GBD studies [42].
Our estimates are based on the GEMM NCD + LRI method which
considers all deaths due to non-communicable diseases (NCDs)
and lower respiratory infections (LRIs) associated with long-term
ambient PM2.5 exposure. We consider the health responses of 15
different age groups to ambient PM2.5 pollution.

The premature deaths due to PM2.5 exposure can be calculated
as

DM ¼ MR� Pop� HR� 1
HR

: ð10Þ

Here, MR is the basic mortality ratio; Pop represents the total pop-
ulation; HR represents the hazard ratio and the detailed calculation
can be found in Burnett et al. [19]. The country-based baseline mor-
tality data for each disease and the gridded population data on a
0.1� longitude � 0.1� latitude spatial resolution are both from
GBD 2016 [42].

We then apply the widely-used direct proportion approach to
assign the fraction of mortality contributed by household
consumption-related PM2.5 in each source region. The direct pro-
portion approach assumes that the contribution of one source to
the disease burden of air pollution is directly proportional to its
share of the total PM2.5 concentration. Then, the gridded mortality
caused by the household consumption activities of a specific region
can be calculated as

DM0 ¼ DM � DC
C

; ð11Þ
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in which DC is the gridded household consumption-related PM2.5

concentration of a specific region; C is the gridded annual mean
PM2.5 concentration. Following this method, we also calculate the
gridded premature deaths (0.1� longitude � 0.1� latitude) caused
by urban/rural direct/indirect emission-related PM2.5 exposure.
2.5. Identifying urban and rural households from the premature deaths

We attempt to identify urban and rural households from all pre-
mature deaths. This process is done with a high-resolution spatial
distribution dataset of urban and rural population densities in
China. The population dataset is built based on a hierarchical pop-
ulation spatialization model at 100 m resolution, by using the
street blocks classification and ranks according to land use cate-
gories and VANUI index. The permanent resident demographic
information of 2015, NPP/VIIRS nighttime lights data [43], land
use [44], road network [45], and other auxiliary data are used as
model inputs. The urban and rural population is allocated to the
100 m grid cells based on multi-source data and the hierarchical
population spatialization model. To match the resolution of our
gridded mortality data, the population data are re-projected to
0.1� longitude � 0.1� latitude. The overall and local pattern com-
parison, correlation analysis, and matching analysis of the existing
population spatialization data suggest that the model’s population
spatialization data have higher accuracy. As shown in Fig. S4 (on-
line), the spatial distribution of urban and rural population data
are consistent with their land distribution supplied by the Geo-
graphical Information Monitoring Cloud Platform (GIM Cloud,
http://www.dsac.cn).

With the urban and rural population spatial distribution data-
set, the ratio of urban and rural population in each grid could be
estimated. Through applying such a population ratio to the prema-
ture deaths data, we could separate the premature deaths in each
grid into urban and rural households respectively.
2.6. Uncertainty analysis

There exist some limitations in this work due to uncertainties in
the emission inventories, MRIO analysis, GEOS-Chem simulations,
GEMM model, and population spatial distribution dataset. Firstly,
emission inventories are subject to errors in the process of data
collection and processing, such as production activities, technology
distribution, and emission factors. The uncertainties for emissions
of NOx, SO2, BC, and POC were estimated to be ±31%, ±12%, ±208%,
and ±258%, respectively [46]. Secondly, the provincial MRIO table
used here also contains uncertainties contributed by errors in data
collection and economic relationship balancing. Thirdly, as dis-
cussed in previous studies, uncertainties of GEOS-Chem simula-
tions are associated with multiple factors, such as errors in
emission inventories and model representations of atmospheric
chemical and physical processes [23,33]. A full evaluation of model
uncertainties is computationally prohibitive. Nevertheless, many
of GEOS-Chem errors are corrected by the satellite-based post-
model scaling. Fourthly, the GEMM is subject to the internal valid-
ity and the generalizability of the health model [47,48]. According
to the uncertainty estimates introduced by Burnett et al. [19],
we calculate the 95% confidence intervals for the premature deaths
estimated in this study. We do not consider the exposure–response
functions associated with PM2.5 sizes and types due to a lack of
data. Finally, the uncertainties of the urban/rural population spa-
tial distribution dataset are largely contributed by the precision
of basic spatial data used in the model. By comparing the simulated
population spatialization data with the population spatialization
data supplied by GIM Cloud, we find that the average error at the
county level is 1.43%. Previous work has tested the uncertainties

http://www.dsac.cn/
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of this dataset in Beijing, indicating that the model simulation error
against China’s published population data was less than 10% [49].

3. Results

3.1. Ambient PM2.5 pollution driven by household consumption
activities

On the basis of MRIO model analysis and GEOS-Chem simula-
tions, we first estimate the contribution of household consumption
to PM2.5 pollution in China. As shown in Fig. 1, Chinese household
consumption activities (direct + indirect) contribute 7.6 Tg NOx, 6.9
Tg SO2, 6.2 Tg NH3, 87.4 Tg CO, 1.0 Tg BC, 2.2 Tg POC, and 1.6 Tg
other primary PM2.5 in 2015. Over half of carbonaceous pollutants
emissions (e.g., CO, BC, POC, and other primary PM2.5), which pri-
marily result from incomplete combustion of fossil fuels and bio-
mass, could be attributed to household consumption in China.
Species like NOx and SO2 are usually emitted from the industrial
(e.g., electricity, heating, and other industries, see Fig. S5 online)
and/or transportation sectors. Thus, compared with consumption
activities like government consumption and capital formation that
are associated with massive industrial production, household con-
sumption activities contribute much less NOx and SO2 emissions.
Due to heavy reliance on agricultural products and processed food,
households are responsible for 59% of NH3 emissions, the majority
of which are indirect emissions.

For urban households, their direct energy use for heating, cook-
ing, and private vehicle driving accounts for only 10%, 18%, and 3%
of household consumption-associated NOx, SO2, and NH3 emis-
sions, respectively (Fig. 1a–c). However, with indirect emissions
included, these contribution rises to 71%, 62%, and 71%. This is
because, compared with rural households, urban households have
a larger population, a different consumption structure (e.g., types
of goods), and higher consumption affordabilities on products
Fig. 1. Different consumption sources’ contribution to China’s PM2.5-related emissions
primary PM2.5 (lPM2.5) with the number below each panel showing their annual emiss
formation, stock, and export.
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and services; and they tend to use cleaner fuel types. On the con-
trary, rural households are more self-sufficient and more heavily
rely on fossil fuels and biomass. Thus, via direct energy use, rural
households contribute over half of the household consumption-
associated carbonaceous emissions.

We further quantify ambient PM2.5 concentrations contributed
by household consumption. In 2015, the national annual average
PM2.5 concentration over China is estimated to be 31.1 lg/m3

(Fig. S6 online), more than 6 times the guideline level of WHO
(5 lg/m3). Of the national annual average PM2.5 concentration,
10.0 lg/m3 is attributed to household activities (Fig. 2a). The rest
results from natural sources and other anthropogenic consumption
sources, including capital formation, government consumption,
stock, and international exports. As shown in Fig. 2b, in Eastern
China, over 40% of the PM2.5 concentrations could be attributed
to household consumption activities. The proportion even reaches
66% in Heilongjiang Province. In contrast, household consumption
activities could explain less than 30% of PM2.5 concentrations in
Western China, where PM2.5 pollution is dominated by natural
dust. Household consumption-associated PM2.5 concentration in
a region is contributed by local household consumption, household
consumption in other regions, and PM2.5 pollution transported in
the atmosphere from other regions.

3.2. Who pollute and who suffer

Household consumption-associated PM2.5 pollution could harm
public health and even result in premature deaths. As estimated in
Fig. 3, the ambient PM2.5 pollution-related premature deaths in
China are estimated to be 2.39 million cases (95% CI: 1.98–2.76
million cases) in 2015, of which 88% are due to anthropogenic
activities. Our estimate based on the GEMM model is more than
twice the estimate based on the IER model in Zhao et al. [8]. This
corresponds with the difference revealed by Burnett et al. [19].
in 2015. The figure shows the emissions of NOx, SO2, NH3, CO, BC, POC, and other
ion totals. Other consumption activities include government consumption, capital



Fig. 2. Ambient PM2.5 concentrations caused by Chinese household consumption
(a) and their proportion in total ambient PM2.5 concentrations (b) in 2015. The value
of Taiwan Province is blank due to lack of data.
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Fig. 4a indicates that premature deaths are mostly concentrated in
populous regions, such as Shandong, Hebei, Henan, Jiangsu, and
Guangdong. Among all anthropogenic PM2.5 pollution-related
deaths, 45% (i.e., 1.06 million cases, 95% CI: 0.89–1.24 million
cases) is attributed to household consumption activities. Deaths
due to household direct emissions are 1.5 times as much as that
due to indirect emissions.

For the deaths attributed to household direct emissions, the
contribution from urban households is only half of that from rural
households. However, for the deaths associated with household
indirect emissions, the urban contribution is over triple that of
the rural. Overall, urban and rural household total consumption-
associated death contributions are comparable with each other.
Comparing Fig. 4b with Fig. 2a, we find that the spatial distribu-
tions of household consumption-associated PM2.5 concentrations
and premature deaths show large differences. This is partly
because the amount of premature deaths is affected not only by
the severity of PM2.5 pollution but also by population density.

We further explore who suffer from household consumption-
associated PM2.5 pollution, by identifying different household
groups from all premature deaths. Among the 1.06 million house-
hold consumption-associated premature deaths, 56% are urban
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households and 44% are rural households, approximately equal to
their proportion in the total population. For each province, urban
and rural premature deaths are also proportional to their popula-
tion (Figs. S7 and S8 online). Considering that PM2.5 and its precur-
sors can stay in the atmosphere for days, they can be transported to
downwind areas at various distances. Urban and rural areas in
China tend to be interlaced, so pollutants can be easily mixed
between urban and rural areas no matter where it is produced.
Therefore, the urban and rural deaths caused by either consump-
tion source (direct or indirect) tend to follow their population
proportion.

3.3. National and provincial urban–rural inequalities

At both national and provincial scales, we further analyze the
urban–rural contrast in terms of their roles as pollution sources
and receptors. We examine the ratio between the pollution con-
tributed by each household type and the pollution-related mortal-
ity risk that household type suffers from. Here, we introduce
several terms to simplify the discussion: (1) PDS, per capita death
suffering (the proportion of deaths in the total population of a
group). We use PDS to represent household mortality risk. Urban
and rural PDS could be represented by UPDS and RPDS respec-
tively, and this rule is also applied to the following terms; (2)
PDC, per capita death contribution (deaths contributed by per cap-
ita consumption activities in a group). We use PDC to represent
household pollution contribution at the country level; (3) PAC,
per capita consumption-based APE contribution. We use PAC to
represent household pollution contribution for each province.
Using the provincial APE instead of explicitly modeling each pro-
vince’s contribution to PM2.5 pollution is because the modeling
would have required too many computational resources to do
the calculations for the 30 individual provinces.

From a national level, we contrast urban and rural household
PDC and PDS. In the direct emission case, compared with urban
households, rural households have over twice the pollution contri-
bution (UPDC: 2.7 cases/ten thousand people; RPDC: 7.1 cases/ten
thousand people), but suffer from a lower mortality risk (UPDS: 4.6
cases/ten thousand people; RPDS: 4.5 cases/ten thousand people).
In contrast, in the indirect emission case, urban and rural house-
holds suffer from comparable mortality risk (UPDS: 3.2 cases/ten
thousand people; RPDS: 3.1 cases/ten thousand people), but urban
households have almost triple pollution contribution (UPDC: 4.4
cases/ten thousand people; RPDC: 1.6 cases/ten thousand people).

Such urban–rural inequalities are also obvious in individual
provinces (Fig. 5a, b). In the case of direct emission (Fig. 5a), UPAC
is just half as much as RPAC on the national average, but their mor-
tality risk (i.e., PDS) is almost at the same level. Such inequalities
are severer (i.e., U-RPDS/U-RPAC is further from 1.0) in less devel-
oped provinces, because direct emissions in these provinces are
dominantly contributed by rural households (Fig. S8 online). By
comparison, the urban–rural inequalities are weaker (i.e., U-
RPDS/U-RPAC is closer to 1.0) in the developed provinces with
large urban populations, such as Shanghai, Beijing, Zhejiang,
Guangdong, Tianjin and Fujian.

In the case of indirect emissions (Fig. 5b), the contrast between
household PAC and PDS shows results opposite to those for direct
emissions. Compared with rural households, urban households
have more PAC by 0.4–2.2 times in each province. However, urban
and rural households suffer from comparable mortality risks (i.e.,
PDS). This contrast is obvious in several affluent provinces like
Shanghai and Guangdong. Although urban households in these
provinces have very high values of per capita annual consumption
expenditure, most of the emissions embedded in their consump-
tion activities are outsourced to other provinces [9,29]. By compar-
ison, Jiangsu is an affluent province, but its rural–urban contrast is



Fig. 3. Different consumption sources’ contribution to China’s PM2.5-related premature deaths in 2015. Bar plots on the right show premature deaths in urban and rural
households as a result of pollution exposure.

Fig. 4. Premature deaths caused by total (a) and household consumption related (b)
ambient PM2.5. The value of Taiwan Province is blank due to lack of data.
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the weakest (i.e., U-RPDS/U-RPAC is closest to 1.0) among all pro-
vinces, resulted from the relatively small difference between its
UPAC and RPAC. This is because rural households’ per capita
annual consumption expenditure in Jiangsu is the highest among
30 provinces and is comparable with Jiangsu’s urban households.

For both direct and indirect emission, compared with urban
households, rural households suffer from higher mortality risks
in Beijing and Tianjin. This might be because a large portion of
rural households in these two megacities live at the border with
Hebei Province, thus would be largely affected by the pollution
transported across the border. In Xinjiang, rural households suffer
from twice the health risk of urban households in both cases. This
might be because urban households in Xinjiang usually live in lim-
ited major cities which are relatively far from each other, thus
would be less affected by the pollution contributed by industrial
and residential processes in the suburban and rural areas.
4. Discussion and conclusions

Our results show that rural households contribute over 2/3 of
the PM2.5-related premature deaths associated with direct energy
use, while urban households contribute over 3/4 of the PM2.5-
related premature deaths through indirect emissions related to
purchase of products. Among all household consumption-
associated premature deaths, 56% are urban households and 44%
are rural households, approximately equal to their proportions in
the total population. There exist notable urban–rural inequalities
in terms of their roles as victims versus contributors of pollution.
Although urban households contribute more indirect emissions
and associated deaths, the corresponding mortality risk they suffer
is relatively low at the provincial and national levels. The opposite
results are true for direct emissions.

China’s ongoing urbanization process has altered and will con-
tinue to alter households’ living areas and consumption prefer-
ences. The nation’s urban area fraction in 2030 is projected to
reach almost 3%, equal to 7 times that in 1980 and 3 times that



Fig. 5. Urban and rural household PAC versus PDS under direct (a) and indirect (b) emissions cases. PDS refers to per capita death suffering, that is, the proportion of deaths in
the total population of a group. UPDS and RPDS refer to urban and rural PDS respectively. PAC refers to per capita consumption-based APE (i.e., air pollution equivalent)
contribution. UPAC and RPAC refer to urban and rural PAC respectively. Provinces are ranked according to their per capita annual consumption expenditure (Fig. S9 online),
reflecting provinces’ affluence levels in this study.
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in 2010 [7]. The ratio of the nation’s urban population to rural pop-
ulation surged from 0.2 in 1980 to 1.8 in 2021 [12]. These changes
brought by China’s urbanization give rural-to-urban migrants
more access to cleaner fuels, which will significantly reduce the
pollution contributed by residential energy use and benefit human
health in both areas [7]. At the same time, the rapid growth of
urban population also increases household reliance on clean(er)
energy resources. To maintain sustainable urban development,
China should accelerate the energy mix transition and improve
energy efficiency, taking the opportunity provided with the carbon
neutrality pledge [50].

The urbanization process usually provides higher incomes to
rural-to-urban migrants and changes their consumption prefer-
ences, resulting in an increase of indirect emissions if the nation’s
economic structure and emission intensities are fixed. Suppose
rural-to-urban migrants perform the same consumption beha-
viours as urban households, China’s urbanization process would
nationally avoid direct pollution-associated premature deaths by
4 cases for every 10,000 migrants, but would increase indirect
pollution-associated premature deaths by 3 cases per 10,000
migrants. Thus, during the urbanization process, the increased
indirect pollution would largely offset the premature deaths
avoided by reduced direct pollution. Different from the direct
emissions from household energy use, the increased indirect emis-
sions of any specific region could spread all over China along the
supply chain [17,51]. The industry-intensive regions could receive
more outsourced air pollution, affecting public health in their local
and surrounding areas.

In addition, green products are usually at higher prices, thus
many rural-to-urban migrants might still prefer to consume
cheaper and more pollution-intensive products [52]. This could
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increase urban household per capita indirect pollution contribu-
tion, i.e., higher ratio of UPAC to RPAC. With China’s urbanization
ongoing, more people would be concentrated in several major
cities. Thus urban households would be less affected by the pollu-
tion from industrial processes in suburban and rural areas, which is
to a large extent indirectly driven by households’ purchase of prod-
ucts, i.e., lower ratio of UPDS to RPDS. These factors could aggra-
vate indirect emission-associated urban–rural health inequality.

Comprehensive environmental and socio-economic strategies
could be developed to abate indirect pollution, diminish household
exposure to pollution, and alleviate accompanying inequality.
Firstly, companies, especially the leading ones in heavily polluting
industries, could be regulated to report their direct and indirect
(i.e., all upstream and downstream emissions arising from the
firm’s supply chain) emissions [53]. Disclosure of indirect emis-
sions will contribute to reliable consumption-based emission
accounting and promote the companies’ green production. Sec-
ondly, an efficient cross-regional pollution abatement collabora-
tion in China could be established to mitigate transboundary air
pollution caused by interregional trade and atmospheric transport
[10,54]. Thirdly, China’s environmental pollution taxation could be
imposed upon consumption (rather than production, as imple-
mented currently) of pollution-intensive products [9,30]. The tax
revenue could then be recycled as subsidies to less affluent rural
and urban households to boost their transition to clean(er) energy
[55,56]. These strategies will help reduce air pollution and associ-
ated urban–rural inequalities by incentivizing green consumption.

In China and other developing countries, urbanization is occur-
ring at varying stages. Our findings shed new light on environmen-
tal policy formulation during this process that takes consumption
activities and social-economic inequalities into consideration.
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Effectively joint control actions would contribute to an urbanized
country along with improved household life quality.
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